Semester	JAN 2022
Open to semester	8,14,22
Course code	PHY464/PH6434
Course title	Astrophysical Processes
Credits	3 /4
Course Coordinator & participating faculty (if any)	Prasad Subramanian
Nature of Course	Lectures
Pre-requisites	Basic Astrophysics (required), familiarity with elements of Fluid dynamics, some plasma physics (suggested, not absolutely required)
Objectives (goals, type of students for whom useful, outcome etc)	-
Course contents (details of topics /sections with no. of lectures for each)	Two modules: module 1 (40% of course), module 2 (60% of course)
	Module 1:
	======
	Quick review of gas dynamics: (Frank Shu, A. R. Choudhuri)
	Compressible flows, transonic flows, shocks,
	plus astrophysical examples (solar wind, accretion flows, detection of shocks near the Earth, in the solar corona, etc.)
	Particle acceleration: (Longair)
	Phenomenological treatment of particle acceleration -

Fermi first and second order acceleration, both
kinematic and diffusion treatments 2 weeks
Cosmic rays
General features of the spectrum (power law, low energy flattening, knee, ankle, comparison with terrestrial accelerators)
Other constituents - like photons, antimatter, etc.
Discovery, modern detectors, especially large ones and Ooty - GRAPES-3
Acceleration sites - supernovae shocks (why),
Cosmic ray diffusive propagation/confinement in the galaxy - spallation, B/C ratio
Shock acceleration
energy estimates, power law index shock strength
- the injection problem
- strong turbulence (delta B/B)
Unsolved problems - absence of a GZK cutoff, exotic candidates for higher energy cosmic rays

	Module 2 ======
	Radiative Processes:
	Rybicki & Lightman
	Chap 1 - Radiative Transfer 1 week
	Chap 8 - Plasma effects 1 week
	Chap 5 - Bremmstrahlung 1 week
	Chap 6 - Synchrotron 1.5 weeks
	Chap 7 - Compton scattering 1.5 weeks
	Propagation of radiation through plasma: Dispersion, pulse broadening, Faraday rotation, scattering 2 weeks
Evaluation /assessment	End-Sem Examination-40% Mid-Sem Examination-30% Others-Two quizzes 15% each%
Suggested readings (with full list of authors, publisher, year, edn etc.)	Books:
	Astrophysics for Physicists - A R Choudhuri
	Theoretical Astrophysics - vol 1, T Padmanabhan

Radiative Processes in Astrophysics - Rybicki and Lightman
High Energy Astrophysics - Longair (vols I and II)
The Physics of Astrophysics - Frank Shu (vols I and II)