Semester	JAN 2022
Open to semester	6,8,22
Course code	EC3224/EC6224
Course title	Geophysical Fluid Dynamics
Credits	4 /4
Course Coordinator & participating faculty (if any)	Suhas Ettammal
Nature of Course	Lectures and Tutorials
Pre-requisites	Nil
Objectives (goals, type of students for whom useful, outcome etc)	The main goal of the course is to understand the dynamical processes in the atmosphere and Ocean and their mathematical- physical formulation. GFD is a prerequisite for all advanced courses in Earth and Climate science (Geophysics, Advanced fluid dynamics, climate modeling, tropical meteorology etc). Though GFD mainly addresses the atmospheric-Oceanic fluid system, the tools and techniques developed would be useful for studying other fluid systems (e.g. dynamics of the mantle and lithosphere, astrophysical fluid dynamics). Lectures + Tutorials (mainly fluid tank laboratory experiments. It helps students better understand the GFD concepts and gain physical insights)
Course contents (details of topics /sections with no. of lectures for each)	Physical properties of fluids Continuum hypothesis Framework for describing fluid motion Lagrangian and Eulerian frameworks Fundamental forces acting on fluids Conservation laws Momentum, mass, and energy Equation of state Rotating and non-rotating frames of references Apparent forces: centrifugal and Coriolis forces Naiver-Stokes equations in a rotating spherical coordinate Simplifications and approximations of the governing equations (Naiver-Stokes equation) Traditional approximation Boussinesq-Anelastic approximations f and Beta-plane approximations

	Scale analysis
	Physical properties of fluids
	Continuum hypothesis
	Framework for describing fluid motion
	Lagrangian and Eulerian frameworks
	Fundamental forces acting on fluids
	Conservation laws
	Momentum, mass, and energy
	Equation of state
	Rotating and non-rotating frames of references
	Apparent forces: centrifugal and Coriolis forces
	Naiver-Stokes equations in a rotating spherical coordinate
	Simplifications and approximations of the governing
	equations (Naiver-Stokes equation)
	Traditional approximation
	Boussinesq-Anelastic approximations
	f and Beta-plane approximations
	Scale analysis
	Hydrostatic approximation
	Geostrophic approximation
	Gradient wind approximation
	Cyclostrophic approximation
	Thermal wind balance
	Vertical coordinates
	Height, Pressure, Theta (entropy) coordinates
	Vorticity and Circulation
	Kelvin circulation theorem, physical interpretation of vorticity
	equation and their applications, potential vorticity.
	Effect of friction on fluid
	Effect of friction on large-scale flow, Ekman layer and
	pumping, Western boundary intensification.
Evaluation /assessment	End-Sem Examination-40%
	Mid-Sem Examination-40%
	Others-20%
Suggested readings (with full	Atmosphere Ocean and Climate Dynamics John Marshall
list of authors publisher year	and Alan Plumb
edn etc.)	Atmospheric and Oceanic Fluid Dynamics, Geoffrey Vallis
	An introduction to Dynamic Meteorology I R Holton and G
	I Hakim
	Physics of the Atmosphere and Climate Murray I Salby
	Thysics of the Fullosphere and Chillate, Multuy E Suby.